
{
 "id": "d9b43773-c41c-4854-8e84-d0cd09365022",
 "name": "Jonatas Baldin",
 "twitter": "@jonatasbaldin",
 "job": "Software Developer & Promoter",
 "company": "Cheesecake Labs",
 "talk_title": "API Design: Think First, Code Later",
 "talk_description": "please do this"
}

/r/python/

/r/python/

What is an API?
- Application Program Interface
- Routines, tools and and protocols
- Interaction between users and programs
- Or programs and programs
- Independent of underlying technology

And a REST API?
- Representational State Transfer
- Roy Fielding
- Resources and Representations
- URIs (Uniform Resource Identifier)
- Hypermedia As The Engine Of Application State
- Has six constraints

REST: The Constraints
- Uniform interface
- Layered system
- Client-Server
- Stateless
- Cacheable
- Code on demand (optional)

REST: The Constraints
- Uniform interface
- Layered system
- Client-Server
- Stateless
- Cacheable
- Code on demand (optional)

HTTP and JSON
just a little bit

{
 "id": "d9b43773-c41c-4854-8e84-d0cd09365022",
 "name": "Jonatas Baldin",
 "twitter": "@jonatasbaldin",
 "job": "Software Developer & Promoter",
 "company": "Cheesecake Labs",
 "talk_title": "API Design: Think First, Code Later",
 "talk_description": "please do this"
}

{
 "id": "d9b43773-c41c-4854-8e84-d0cd09365022",
 "name": "Jonatas Baldin",
 "twitter": "@jonatasbaldin",
 "job": "Software Developer & Promoter",
 "company": "Cheesecake Labs",
 "talk_title": "API Design: Think First, Code Later",
 "talk_description": "please do this"
}

RIP XML

Bad, bad design
- Absence of consistency
- Difficulty to scale
- Hard to learn
- Performance issues
- APIs tend to be forever

Blueprint API <3
- A powerful high-level API description language for

web APIs
- API Design and Documentation
- [Markdown]()
- Tools
- Resources, actions and URIs
- MSON

Apiary

drakov

Other tips
- Nouns: YES / Verbs: NO
- Use plural on your URI resources
- Filter with query parameters
- Return errors with 4xx (and use codes correctly)
- Don't reimplement authentication
- Take a moment to think about versioning
- If you API is public, throttle it

Good Awesome design
- Talk to your customers
- Easy to use
- Hard to misuse
- Simple is better than complex
- Use your API before implementing it
- Be resilient
- Test everything

vlw flw
questions?

