
DJANGO
C H A N N E L E D

“jojo”
@jonatasbaldin

DJANGO IS AN OLD FRAMEWORK
SOLVING OLD PROBLEMS

client makes
a request

server process it
and sends a response

client displays
the response

client makes
a request

Django receives an HTTP Request
routes it to a View

which returns an HTTP Response
client displays
the response

In 2017, web apps need to know
how to display a feed in your timeline,

from thousands of people around the world,
as soon as they publish new content,

in less than one second

Real-Time
Web Applications

SSE
WebRTC

Streaming

WebSockets

WebSocket is a bidirectional and
message-oriented transport layer,

allowing clients and servers to exchange
data using a persistent connection

WebSocket is a bidirectional and
message-oriented transport layer,

allowing clients and servers to exchange
data using a persistent connection

WebSocket is a bidirectional and
message-oriented transport layer,

allowing clients and servers to exchange
data using a persistent connection

WebSocket is a bidirectional and
message-oriented transport layer,

allowing clients and servers to exchange
data using a persistent connection

It has a simple JavaScript API

.onopen()
.onmessage()

.send()
.onerror()
.onclose()

WebSocket is not HTTP!

server establishes
the connection

and the data flows

client connects
to the WebSocket

server

client connects
to the WebSocket

server
Django doesn’t understand it

and makes the client sad

:(

DJANGO IS AN OLD FRAMEWORK
SOLVING OLD PROBLEMS

DJANGO IS AN OLD FRAMEWORK
SOLVING OLD PROBLEMS

BUT IT CAN BE EXTENDED
TO SOLVE NEW ONES

Channels

Enables Django to handle WebSockets and
other asynchronous tasks using familiar

Django design patterns

Before Channels

view

WSGI

client

HTTP Request

HTTP Response

After Channels

Worker

Channels Backend

client

message

message

ASGI

Let’s break it piece by piece

As WSGI doesn’t understand WebSockets, a
new spec was created – ASGI – which

basically replaces WSGI

Channels ships with an ASGI
implementation server, called Daphne

asgi.py
import os

from channels.asgi import get_channel_layer

os.environ.setdefault(
 'DJANGO_SETTINGS_MODULE',
 ‘wsquiz.settings'
)
channel_layer = get_channel_layer()

Daphne is executed like any other WSGI
server, just run the command

$ daphne project.asgi:channel_layer

Note that Daphne also speaks HTTP, so you
can completely remove your WSGI server

Worker

Channels Backend

client

message

message

ASGI (the new WSGI - Daphne)

A Channel is basically a named task queue
used to store and process messages

It’s a FIFO queue with message expiry and
at-most-once delivery

It’s a FIFO queue with message expiry and
at-most-once delivery

It’s a FIFO queue with message expiry and
at-most-once delivery

It’s a FIFO queue with message expiry and
at-most-once delivery

Each message has a unique reply_channel
that is used to send a response to the client

consumers.py
def ws_connect(message):
 message.reply_channel.send({'accept': True})

def ws_message(message):
 message.reply_channel.send(message[‘text’])

routing.py
channel_routing = [
 route('websocket.connect', ws_connect),
 route('websocket.receive', ws_message),
]

We can also assign the reply_channel
to a Channel Group,

allowing the broadcast of messages

consumers.py
def ws_connect(message):
 Group('tweets').add(message.reply_channel)

models.py
class Tweet(models.Model):
 text = models.CharField(max_length=140)

 def save(self, *args, **kwargs):
 result = super().save(*args, **kwargs)
 Group('tweets').send({'text': self.text})
 return result

routing.py
channel_routing = [
 route('websocket.connect', ws_connect),
]

These messages can be stored
in different ways

In-Memory
testing and single-process

POSIX IPC
single-machine

REDIS/RabbitMQ
network layer

settings.py
CHANNEL_LAYERS = {
 'default': {
 'BACKEND': 'asgi_redis.RedisChannelLayer',
 'CONFIG': {
 'hosts': [(REDIS_HOST, 6379)],
 },
 'ROUTING': 'wsquiz.routing.channel_routing',
 }
}

Worker

Channels Backend (routing and datastore)

client

message

message

ASGI (the new WSGI – Daphne)

The worker is responsible to listen to
Channels and consume messages once

they are ready

consumers.py
def ws_message(message):
 message.reply_channel.send(message['text'])

routing.py
channel_routing = [
 route('websocket.receive', ws_message),
]

Channels comes with a Django management
command for running workers!

$ python manage.py runworker

Worker (Django management command)

Channels Backend (routing and datastore)

client

message

message

ASGI (the new WSGI)

To develop the client
– like a JavaScript application –

Channels comes with a library called
WebSocketBridge

const webSocketBridge = new channels.WebSocketBridge();

webSocketBridge.connect('/ws/');

webSocketBridge.listen(function(data) {
 console.log(data);
});

Worker (Django management command)

Channels Backend (routing and datastore)

client (WebSocketBridge)

message

message

ASGI (the new WSGI)

Summing up…

Worker

Channels Backend

client

message

message

ASGI

Worker

Channels Backend

client

message

message

ASGI (the new WSGI - Daphne)

Worker

Channels Backend (routing and datastore)

client

message

message

ASGI (the new WSGI - Daphne)

Worker (Django management command)

Channels Backend (routing and datastore)

client

message

message

ASGI (the new WSGI - Daphne)

Worker (Django management command)

Channels Backend (routing and datastore)

client (WebSocketBridge)

message

message

ASGI (the new WSGI - Daphne)

“But I still need to run normal Django”

Worker

Channels Backend

client

message

message

ASGI WSGI

view

reverse proxy

request

response

Testing is simple!

$ python manage.py runserver

Testing is simple!

$ python manage.py runserver

not recommended for production

Channels changes the way
Django runs to be event-oriented

The WSQuiz

https://wsquiz.herokuapp.com/

Things to take into consideration

WebSocket has TLS, please use it!

WebSocket and Subprotocols

Tests, documentation and monitoring

Today, all of the major browsers support
WebSockets, but write fallbacks for

critical core business

Channels is a young project,
but the first Django official app

Let’s study!

channels.readthedocs.io

github.com/andrewgodwin/channels-examples

github.com/jonatasbaldin/wsquiz

DJANGO
C H A N N E L E D

@jonatasbaldin

DJANGO
C H A N N E L E D

@jonatasbaldin

the D is silent

